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Abstract
The definition and implementation of coherent methods of rep
senting data as a formal data model have been used to create
eral-purpose tools for visualization, computation and da
management. Despite the relative success of these data mo
there are gaps in their capabilities to support either specific clas
of data or to map well to a user’s problem domains. Therefore
higher-level data model based upon a simple functional definition
proposed and tested, which leverages some of the facilities of ex
implementations.

CR Descriptors:  H.2.1 Data Models; H.2.8 Scientific Databases
Additional Keywords:  Visualization Systems.

1. INTRODUCTION

The instrumentation technology behind data generators in a myr
of disciplines is rapidly improving, typically much faster than th
techniques available to manage and use the resultant data. Hig
visible examples occur in projects such as NASA's Earth Observ
System and the DOE Accelerated Strategic Computing Initiati
(ASCI), which produce many TBs of data. For scientific visualiza
tion the role of data management can be expressed by the need
class of data models that is matched to the structure of the data
well how such data may be used.

1.1  Conceptual Models in Visualization

To place data models in context consider the following taxonom
which decomposes visualization into a set of conceptual models

•User: how user requirements are
considered
•Interaction: how a user interacts
with visualization
•Computational:  how operations
are expressed
•Communication:  how system
components interact
•Display:  how data are realized
and rendered

Figure 1.  Conceptual Models in Visualization.

1.2  Data Models

A data model is a representation of data, that is how data
described (e.g., abstract data type) and how data are used (
applications programming interface). To serve as a lexicon of d
(i.e., a lingua franca for software and users), a data model m
include formal definitions and algebra to express the organizat
and manipulation of data. In this context, visualization itself is n
treated as special -- just another consumer and generator of d
Another way to view this idea is a layer that provides a logical lin
between the concepts that scientists use to think about their dom
(e.g., particle trajectory, cerebral cortex shape, plasma tempera
profile, or gene) and the underlying data from simulation, expe
ment or storage system. In particular, this layer provides tools t
are common to all applications for data definition, metadata su
port, and query formulation and execution.

1.3  Related Work
There are many other efforts to develop data models related to v
alization. While their results are widely used, they have limitations

Common Data Format (CDF), developed at NASA/Goddard Spa
Flight Center initially in the mid-1980s, was one of the first imple
re-
gen-
ta
dels,
ses
, a
is

tant

.

iad
e
hly

ing
ve
-

for a
as

y,
.

are
e.g.,
ata
ust
ion
ot
ata.
k
ain

ture
ri-
hat
p-

isu-
.

ce
-

mentations [8]. It is based upon the concept of providing low-lev
abstract support for scientific data that can be described by a mu
dimensional block structure. From that effort spawned the Unida
Program Center's netCDF, which is more focused on data transp
[9].  Both CDF and netCDF support disk-based operations.

Another example is the Hierarchical Data Format (HDF) develop
by the National Center for Supercomputing Applications [7]. HD
uses an extensible tagged file organization to provide access
basic data types like a raster image, multidimensional block, sim
hierarchical collections, etc. Currently, all of HDF's data structur
are memory resident. A lack of scalability in HDF is being
addressed with a new implementation (HDF5) that offers improv
performance at an array access level by enabling users to have m
control over how data are stored and accessed.

VisAD (Visualization for Algorithm Development) was developed
by the University of Wisconsin to provide interactive computatio
and visualization facilities derived from a set of abstract mode
The VisAD data model assumes that data objects are approxim
tions to mathematical objects [5]. It supports a wide range of da
types associated with rich metadata, which are embodied as abs
data classes in Java. These facilities are coupled with a disp
model implemented in Java3D, which is defined by a set of ma
pings from primitive data types to primitive display types [6].

Data Explorer is an extended, client-server data-flow system
visualization that is built upon a data model, which supports gen
alized field representation with an API, high-level-language a
visual program access [1]. The data model is derived from t
mathematical notion of fiber bundles as an abstraction for scient
data management [3]. In Data Explorer, this idea is specialized a
extended to incorporate localized, piecewise field descriptions, s
port compact representations that exploit regularity, and data-pa
lel execution. This permits consistent access to data independen
its underlying grid, type or hierarchical structure via an uniform
abstraction to provide polymorphic functions. Data communicatio
among subsequent operations is accomplished by passing poin
and sharing of these structures among such operations is suppo
[4]. Currently, the physical disk-based format, dx, provides on
simple sequential access.

From the aforementioned efforts, ASCI, as part of its overall da
management effort, is developing a very comprehensive data mo
to ensure coverage of many different representations of simulat
data. The main entities in the model are computational meshes
the simulation variables related to them. This data model also u
the notion of fiber bundle sections for the mapping between top
logical spaces. It then introduces the idea of cell complexes, wh
are structures that tile a physical space with geometric cells t
share common faces as a metaphor for computational mes
Under the ASCI program, there is on-going development for th
model and as well as tools that utilize it. The model is based upo
three-layer approach of providing data structures for array and ta
access, then fiber bundles to provide basic mappings, and final
mesh/field level to provide field as well as cell complex acces
HDF 5 is being used to provide the underlying access to storage

In addition, there are other classes of data models. These inclu
for example, geographic information systems (a set of static, tw
dimensional spatial layers), mechanical computer-aided des
(static, 3d hierarchies and non-mesh representations), and the
tional data model (tables of discrete non-spatially-oriented value
A Function-Based Data Model for Visualization
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2. A FUNCTION-BASED UNIFIED DATA MODEL

Despite the capabilities of these scientific data models, there rem
a few areas which are not adequately addressed. This ranges f
the representation of other data types such as ordered struct
(e.g., molecular models), tables and relations, highly irregul
inconsistent or non-spatial sampling (i.e., observations), and agg
gation of disparate types. As is often the case, highly gene
approaches are often difficult for many scientists to adapt to th
own problem domains. Therefore, another aspect that ne
addressing is more direct mapping at a user level. An approa
complementary to the aforementioned efforts is taken to reso
these limitations.

To begin it is necessary to look at the fundamental organization a
definition of data. Any data set may be considered as a single
multi-valued function of one or more independent variable(s) call
dimensions, enumerated from 1 to j. Such dimensions may
space (length, width, height), time, energy, etc. A parameter m
have more than one value, which is characterized by tensor ran
the number of values per dependent variable. The number of e
ments in a particular parameter is ji, which can be generalized as a
set of tuples. The function(s) composing a data set really a
dependent variable(s). Thus, data orD implies a parameter or field
of one or more (dependent) values that is a function of one or m
(independent) variables,

D   = [y1, y2, ... , yi]  = [f1(x1, x2, ... , xj) (1)
 f2(x1, x2, ... , xj)

.

.

.
 fi(x1, x2, ... , xj)]

These functions are continuous in nature, but sampled or d
cretized in a fashion often dictated by the specific computations
be performed. Operations imply a process of transformati
between different functions of this class, whether it is solved as
set of partial differential equations that define flow of heat or gene
ating pixels as a rendering of some geometry.

2.1  Functional Mapping
ConsiderF(D), whereD are data andF is some computation, which
may include an operation in a visualization system such as reali
tion or transformation.D can be extended beyond mesh samplin
or aggregation by examining topological mapping,α,

α : T1 ->  T2 (2)

whereα is a mapping between two topological spaces (e.g.
visualization operation). If bothα andα-1 are continuous thenα is
consideredhomeomorphic. Commonly, there may be more than
one mapping such that

α1 : X ->  Y andα2 : X ->  Y (3)

If α1 can be deformed toα2 thenα1 is consideredhomotopicto α2.
Since such deformable mappings occur often in visualization, t
is a useful classifier forF(D) (see below).  Thus,

F: X x  [0, 1] ->  Y (4)
If F is continuous such thatF (x, 0) = α1 , F (x, 1) = α2 and as the
real variable, t, inF (x, t) varies continuously from [0, 1],α1 is
deformed continuously intoα2

As a result, homeomorphism generates equivalence classes w
members are topological spaces while homotopy generates equ
lence classes whose members are continuous maps. Hence, h
topy equivalent classes are topological invariants of X and Y whi
enables one to vary X or Y through a family of spaces, C(X, Y), a
a collection of valid visualization mappings.

ReconsiderF(D) such thatF: X x  [0, 1] ->  Y, then:
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• X is the space whereD are known
• Y is the space for the (new) mapping
• X andY are homotopic
• X and Y imply points in space with some coordinates wit

respect to a reference system -- in theory
• F(D, t) implies sampling of continuous domain -- in practice
• D is a continuous function, but stored as a discrete set in C(X,

on whichF(D, t) varies

But in practice, there are five cases forF
1. If X and Y are the same, then provide results unchanged (i.

available "samples")
2. If X andY are equivalent classes discretely, then map betwe

the spaces,X ->  Y (e.g., cartographic warping -- homotopy)
3. If X andY are not equivalent classes discrete, then construc

mapping between the spaces (e.g., interpolate between space
4. If X is unknown (i.e., scattered data), then construct a mapping

Y (e.g., impose anX and interpolate) or provide discrete values
5. If X andF are unknown (i.e., tabular data), then provide discre

values
The relationship between these cases is shown in Table 1, wh
introduces a layered structure. Essentially these layers mov
from the bottom up define semantics, access and interface, listed
the left to accommodate more complex data, where the functio
access is at the top.  Where the five cases fit is shown at the far

Table 1.  Layers of Function-Based Data Model.
This effort has focused mostly on the upper two layers as shown
Table 1 to provide a conceptual specification. An abstraction
each level is presented in a simple fashion, but efficiencies in imp
mentation can be addressed at the lower levels. As an illustrati
consider the following two figures, which show some of the unde
lying components and their relationships.

Figure 2.  Taxonomy of the Field Layer.

Figure 2 illustrates one taxonomy of the field layer, which can b
decomposed into meshes on which the data are sampled that
either implicitly positioned (i.e., regular) or explicitly positioned

Cases Views Layers
1, 2, 3, 4, 5 •“Real world”

•User/Domain
Application
(Functions)

1, 4, 5 •Complexes
•Hiearchies
•Series

Aggregation
Specialization

1, 4, 5 •Semantics for arrays
•Samples or tables

Field (e.g.,
Fiber Bundle)

5 •Virtual organization
•Dimensionality, rank & attributes

Multi-Dimensional
Arrays

•Physical access
•Distribution and locality

I/O, Communication,
Physical Storage
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(i.e., irregular). In the latter case, the mesh may be topologica
regular, in which only the locations of the sample points need
specified, or topologically irregular, in which connectivity informa
tion is required. In all cases, the actual data values on the sam
points are defined. All of this information is stored as a collectio
of multidimensional arrays (i.e., the array layer). The metada
associated with the arrays provides the semantics to define a fie

Figure 3 shows sample taxonomies for the aggregation layer, wh
describes classes of data that can be broken down into simple fie
They may range from a (time) series (a sequence of instances
field) to cases which can be spatially decomposed into sets of s
fields such as a multizone grid or a collection of spatial partitio
for parallel processing. Adding hierarchy enables a description
an adaptive mesh. Some data may be sampled over a topologic
complex mesh. In this case, it may be easier to decompose it in
set of simpler meshes, each of which is of the same class.

Figure 3.  Taxonomy of Aggregation Layer.

3. EXAMPLES

To demonstrate the flexibility of this approach and to test the app
cability of this model, a number of applications have been identifi
for each of the five cases. Only a handful are shown herein. Visu
ization and interaction are used to verify the decomposition a
mapping. The data model and functionality of Data Explorer
extended to provide the function-based interface. Some of th
extensions are usable across different cases and applications.

3.1  Case 2

Figure 4 shows different coordinate systems and sampling for a s
gle scalar data set, which is total column ozone in the earth’s atm
sphere that is irregularly sampled on a two-dimensional manifo
over time. The image only shows a single time step out of a lo
series of daily observations. Essentially, two equivalent class m
pings are presented via generalized cartographic projections
three dimensions, which is a Case 2 example. The window in
upper part of the center of the figure, shows the full data s
mapped to color, opacity and radial deformation. The window
the lower right shows only half (the southern hemisphere). In bo
cases, other data are registered in the final rendering and the s
mapping applied for annotation purposes (topography and coast
data, respectively). The field is discretely sampled in one dime
sion and shown as a plot. The remapping is packaged as a
function to create this application. The user only needs to spec
the field representing the original data and the new space.
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Figure 4.  Different Spaces and Sampling.

3.2  Case 2 and Case 4

Figure 5.  Fusion of Irregular Samplings in Space and Time.

Figure 5 shows several data sets, both scalar and vector, that
sampled irregularly and differently on distinct three-dimension
and two-dimensional manifolds with various irregular sampling
time. The image only shows a single time step out of a series
each of the data sets, ultraviolet intensity, proton density, tempe
ture and speed, topography, and three different magnetic field d
sets. Essentially, one equivalent class mapping is presented v
generalized cartographic projection to three dimensions. Unlike
previous example, these may be either Case 2 or Case 4 bec
some of the data sets are discretely sampled with no information
the relationship between the samples. Each variable is proces
separately by using the same remapping function, with which t
user specifies the original data and the new (spherical) space. In
application that utilizes this function, several choices of realizatio
mappings are offered for the different data sets that are registere
the final rendering in the remapped (earth-centered, spherical) co



al
a
A

e
on-
s
ns
st
le-
el.
is
of

m.

-

to
dinate system. In addition, two of the data sets are plotted at
lower right as a function of their original time sampling.

3.1  Case 1 and Case 3

Figure 6 illustrates what appears to be conventional representat
of two data sets sampled irregularly on a three-dimensional ma
fold over time. The image only shows a single time step out of
series of computed results. But there are some important disti
tions. The first is that the domain on which the data are defined
symmetric, with only one-fourth being specified by the manifold
The second is that while one of the fields is a traditional interv
data set (density), the other (material) is not. Material is catego
cal, specifically nominal (i.e., there is a “name” associated wi
each sample space that may not be related to other sample poi
Therefore, for density this is Case 1 while for material it is Case
Hence, access to the categorical data is packaged as a new fun
to provide the equivalent of traditional field as well as calculation
a derived one for sample points where the material is not homo
nous. In both cases, the relationship between the sampling m
fold and the domain is hidden within the function. The applicatio
shown in the image allows the user to specify various realizatio
and interact with them. In addition, the fields may be queried
invoking the new functions directly. The results are shown both
values in the three-dimensional scene as well as plotted in the lo
right. In addition, the material function enables remapping betwe
those data and density, so that density surfaces can be color map
by material or the density of specific materials can be illustrated

Figure 6.  Sampling of Interval and Nominal Data.

3.1  Case 4 and Case 5

Figure 7 shows three-dimensional representations of several v
ables. They are from a set of some 60 parameters provided a
table from a data base of credit card transactions. Effectively the
data are “sampled” by record from about 48,000 instances. Th
data are all categorical, either ordinal or nominal. Normally, th
would be Case 5. However, some of the ordinal parameters may
interval-like. Hence, access is packaged as a new function, wh
provides the equivalent of traditional field (Case 4) via Delaun
tetrahedralization. In this case, the user interactively chooses
mapping of parameters from the complete set to three spa
dimensions to form the basis of the independent variables. In t
application, up to three additional variables may be selected
being dependent on the first three for creating planar mappin
which are then pseudo-colored contoured. In addition, the origin
data may be queried.
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Figure 7.  “Resampling” of Tabular Data.

4. CONCLUSIONS

Data models can hide the complexity of underlying computation
systems for simulation, analysis and visualization by providing
common mechanism for access, utilization and interchange.
study of data model efforts and limitations in how tools that utiliz
them map to end user requirements has led to a taxonomy of c
ceptual models for visualization. In turn, this taxonomy ha
enabled a simple formalism to define a set of higher-level functio
that map directly to how data may be used in visualization. To te
these ideas, a collection of higher-order functions have been imp
mented by leveraging the capabilities of a lower-level data mod
This demonstrates the feasibility and potential applicability of th
idea. Current plans include the further extension and application
these higher-order functions and continuing to refine the formalis
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